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ABSTRACT 

This paper has been produced in the frame of research group for Automatic Target Recognition (ATR), 
NATO SET 053 TG 29. One of the biggest challenges for automatic target recognition (ATR) methods is 
the accurate and efficient extraction of features from synthetic aperture radar (SAR) images. The aim of 
this work is to evaluate the recognition-oriented properties for 2D modified covariance Super-Resolution 
technique[1]. Recognition-oriented properties in order to enhance features in the scene that are important 
for recognition purposes. Performances of the technique are evaluated in this paper by testing robustness 
of preserving and enhancing features extraction. Results indicate that 2D modified covariance Super-
Resolution technique formation method provides images with higher resolution of scatterers, and better 
separability of different regions as compared to conventional SAR images. 

1.0 INTRODUCTION 

In order to exploit an automatic recognition based on a SAR imagery system, we need to extract certain 
features from the reconstructed images. These feature extraction can be difficult when based on SAR 
images formed by conventional Spectral Analysis methods (Specan), such as the two-dimensional 
matched filter (2D-MF) for reconstruction of the image of the scene sensed from the SAR. A scheme for 
such a system is represented in Figure 1 (view of the SAR-SPECAN processing scheme) where the 2D 
dechirping operation is applied to the hologram to remove the frequency modulation introduced on the 
echo reflected by the single point scatter by the chirped waveform (along the fast-time axis) and by the 
changing distance from the moving radar receiver (along the slow-time axis). One challenge is that the 
resolution of the formed images is limited by the SAR system bandwidth. This complicates point scatterer 
localization, the images suffer from speckle, and in addition this complicates region segmentation for 
shape-based recognition. The slant range resolution of a SAR transmitting chirp signals of bandwidth B is 

( )δ r c B= 2 , where c  is the speed of light, whereas the cross-range (i.e. azimuth) resolution is 
approximately (for small observation angles) ( )δ λa = 2∆θ , where λ  is the transmission wavelength and 
∆θ  is the angle under which a generic point is observed during the formation of the synthetic aperture. To 
improve the resolution beyond these limits (usually denoted as Rayleigh limits) it would be necessary to 
increase the bandwidth of the transmitted signal and the duration of the observation interval. In both cases, 
besides the associated cost, there are severe constraints on the instrumentation stability and on the 
knowledge of the relative motion between the radar and the scene, which has to be compensated for to 
form the synthetic aperture. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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Figure 1. Conventional SAR-SPECAN processing Scheme 

Using the 2D-Covariance on SAR images, the resolution can be improved without acting nor on the 
bandwidth neither on the duration of the observation interval. The improvement of resolution is achieved 
by finding an adequate parametric model (specifically setting the model orders for the considered 2D AR 
model) and estimating the parameters of the model.  

This method produces images which appear to enhance point-based features (e.g. scatterer locations), and 
region-based features (e.g. object shapes), such features are important for recognition purposes[2][3][4][5].The 
AR models are used in this work because they fit well the scattered signal from point reflectors and, to 
some extent, also the signal from extended scenes. High resolution spectral analysis tools have the 
advantage, over the conventional FFT, that their spectral resolution improves with increasing SNR. 
Fourier transform methods obtain a frequency resolution which is constant at about the inverse of the 
observation time, or, for imaging systems, an angular resolution constant at about the ratio of wavelength 
to aperture size. The signal backscattered from the scene and captured from SAR has enough signal-to-
noise power ratio to exploit for resolution improvement. On the other hand, it is known that the FFT 
processing is very robust, while super-resolution methods may be sensitive to model errors. A requirement 
for the application of super-resolution is therefore, that the system accuracy is significantly better than 
necessary for conventional SAR processing.  

In this paper, we use quantitative criteria for evaluating the images produced by this Super-Resolution 
Spectral Analysis (SR-SPECAN) technique for SAR image formation. Experiments has been done on the 
Moving and Stationary Target Acquisition and Recognition (MSTAR) public target data set to compare 
the SAR images formed by the regularized method to conventional images in terms of these quantitative 
measures. The criteria we use regarding point-based features are target-to-clutter ratio, main-lobe width, 
peak matching accuracy and average associated peak distance. The metric of peak matching accuracy is 
particularly useful for testing the super-resolution properties of an image formation technique. The criteria 
we use for region-based features are segmentation accuracy, and separability of different regions models. 
The results of this study show that SR-Technique method yields images with higher resolution and better 
dominant scatterer localization than conventional images, also in considerably reduced amounts of data 
conditions. In addition when the method is used for region-based extraction, results in enhanced anomaly 
and speckle suppression in homogeneous regions, and hence, easier-to-segment images. 

2.0 SUPER-RESOLUTION OF A SINGLE IMAGE 

We now briefly summarize the super-resolution technique developed in [1], [6] and [7]. After having 
dechirped the SAR hologram, each point scatterer in the SAR scene is encoded into a 2D complex 
exponential embedded in the white Gaussian noise (WGN), corresponding to the mixture of ground clutter 
and thermal noise. A conventional spectral analysis (SPECAN), i.e. 2D-FFT, is able to focus at the same 
time all the point targets in the scene with a resolution equal to the so called Rayleigh limits. Since the 
dechirped signal backscattered from point targets is made of complex sinusoids with unknown parameters, 
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super-resolution spectral analysis (SR-SPECAN) techniques can also be applied to extract complex 
sinusoids embedded in WGN[8]; resolution higher than the conventional SPECAN based on the FFT can 
be gained. A better discrimination of the point targets in a SAR image is thus obtained by replacing the 
2D-FFT with SR-SPECAN techniques. The 2D covariance method[7] estimates the power spectral density 
of a 2D AR signal via the linear prediction. The AR spectrum depends on the region of support of the 
processed data. Four regions of supports can be singled out from the grid over which the data are 
available, namely: the first (upper right hand side), the second (the upper LHS), the third (lower LHS), and 
the fourth (lower RHS) quarter planes. Thus, four quarter planes (or quadrants) AR spectra are calculated 
separately; they are combined to form a single unbiased, with circular response (i.e.: with equal resolution 
along the two orthogonal axes of the data grid), AR spectrum P combined  which is derived as follows: 

1 1 1 1 1

1 2
1

1 2 1 2 1 2 1 2P f f P f f P f f P f f P f fcombined 2 3 4( , ) ( , ) ( , ) ( , ) ( , )
= + + +  

 
where f f1 2 and  are the spatial frequencies along the two orthogonal axes (in the SAR case, the range and 
azimuth axes) and P P P P1 2 3 4, , ,  and are the four quarter planes AR spectra. To calculate the single 
quarter plane AR spectrum the mathematical procedure is the following: 

• determine the orders p1 and p2, in range and cross-range directions respectively, of the 2D AR 
model of the data (this step requires a “try and see” procedure and some heuristics; note that the 
maximum order value is a half of the available data length), 

• estimate the 2D AR covariance matrix from the available data, 

• write the 2D Yule-Walker equations to find the coefficients of the linear prediction estimator, 

• apply the 2D Levinson algorithm to efficiently solve the 2D AR Yule-Walker equations (resort is 
made to QR decomposition to have a mathematically stable solution). 

Because of the computational cost of the technique and of the assumption of a small number of point 
scatterers against WGN, the above SR-SPECAN technique cannot be applied in one shot to a large SAR 
image, unlike the 2D-FFT. The practical application of the technique to a SAR image requires the splitting 
of the image into small sub-images via 2D passband filtering operation, the application of the technique to 
each sub-image and finally the recombination of the sub-images into the complete super-resolved SAR 
image.  

 

Figure 2. Proposed SR-SPECAN Scheme for SAR images 

3.0 FEATURE-BASED CRITERIA FOR EVALUATION OF IMAGE QUALITY 

In this section we propose measures for evaluating the quality of images formed by the method outlined in 
Section 2.  Many of these criteria have appeared in the literature before, and they are mostly directed 
towards images to be used in target recognition tasks. 
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3.1 Criteria for Point-Enhanced Images 

3.1.1 Target-to-clutter ratio 

As a measure of accentuation of the target pixels with respect to the background, we will use the target-to-
clutter ratio (TCr) in dB, defined as: 
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∧

jif ,  is the reconstructed image, with the pair (i, j) denoting the pixel indices, Ω denotes a clutter 
patch in the image, and Nc denotes the number of pixels in that patch. 

3.1.2 Main-lobe width 

As one of the measures of the effective resolution of an image, we will use the 3-dB main-lobe width. To 
obtain an estimate of the main-lobe width, we concentrate on the target region. In each row and column in 
the target region of the reconstructed image, we find the first point near the maximum where the 
reflectivity magnitude is more than 3 dB below the maximum value. We then obtain a better estimate of 
the 3-dB distance by means of a linear interpolation between pixels. Finally, we average the distances 
obtained from each row and column in the target region to find an overall estimate of the 3-dB lobe width 
for a particular image. 

3.1.3 Peak matching accuracy 

Locations of dominant point scatterers extracted from a target image are important characteristics for 
recognition. Loss of resolution manifests itself by merging and moving such characteristic points, and this 
makes the accurate localization of these points in the scene more difficult. Thus, we evaluate the super-
resolution properties of our method by measuring how well the dominant scatterers are preserved when we 
use reduced-resolution data to form the image. For this purpose, we extract the locations of the brightest 
scatterers from the conventional and the proposed reconstructions using the same reduced-resolution data, 
and compare these to the “reference” locations of the scatterers. These “reference” positions may be 
obtained either from the ground truth, in case that is available, or from locations of the scatterers extracted 
from a higher resolution image otherwise. In order to extract the scatterer locations, we first find the peaks 
in the reconstructed image. The peaks are taken to be the points where the discrete spatial derivatives of 
the reflectivity magnitude in both the x and the y directions change sign from positive to negative. Once 
the peaks are found, we order them based on their magnitude. Once the peaks are extracted, we evaluate 
how well the coordinates of these peaks match those of the “reference” peaks. This method allows a match 
declaration between two peaks, if the estimated peak location is within a radius r of the “reference” peak 
location. Hence it is more powerful than counting only the exact matches, with r used as a variable 
parameter (r=0 corresponds to counting the exact matches). A one-to-one association of the peaks is made 
such that the sum of the squared distances between the locations of the “reference” peaks and the 
corresponding matched peaks from the image is minimized. We can then count the number of matched 
peaks, to see how well the peaks are preserved. 

3.1.4 Average associated peak distance 

Another criterion based on peak locations that we will use is the average distance between the two sets of 
peaks coordinates. To compute this measure, we relax the matching radius r of Sect. 3.1.3, so that each of 
the peaks from the reconstructed image is matched to a “reference” peak. We then find the average of the 
distances between these associated peaks. 
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3.2 Criteria for Region-Enhanced Images 

3.2.1 Segmentation accuracy 

It is of interest to obtain accurate segmentations of SAR images for effective use of region-based shape 
features in target recognition. Recently there has been much interest in the development of segmentation 
algorithms for conventional SAR images. Our region-enhanced images provide easier-to-segment regions 
as compared to conventional SAR images. We will demonstrate this property by segmenting our 
reconstructions to target, shadow and background regions by simple adaptive thresholding. To determine 
the threshold, we find the mean µ and the standard deviation σ of the dB-valued pixel magnitudes in the 
image. Then, we apply the following decision rule at each pixel: 

Equation 2. Segmentation Decision Rule   

( ) Sfcf jiji ∈→⋅−<⋅ ,1,10
ˆˆlog20 σµ  

( ) Bfcfc jiji ∈→⋅+<⋅≤⋅− ,2,101
ˆˆlog20 σµσµ  

( ) Tffc jiji ∈→⋅≤⋅+ ,,102
ˆˆlog20σµ  

where T,S,B denote the target, shadow and background regions respectively, and c1,c2 are two constants 
that are fixed beforehand. From a statistical standpoint, it would make more sense to develop a decision 
metric based on statistics of particular regions. However, our objective here is not to develop the best 
decision metric, but rather to show that we can obtain reasonable segmentations of the region-enhanced 
images even by simple suboptimal processing. 

4.0 EXPERIMENTAL RESULTS 

4.1 Experimental Setup 
We use images of T72 (sn 132) tanks, BMP2 (sn c21) tanks, and BTR70 (sn c71) armored personnel 
carriers from the MSTAR public target data set to evaluate the performance of our reconstructed images in 
terms of the criteria described in Sect. 3. We use 8 images for each vehicle type, all at 17 depression angle, 
and evenly spaced in azimuth (approximately 45°) to cover 360°. As we will describe, we also carry out 
synthetic scene reconstruction experiments to make some evaluations where ground truth is exactly 
known. In order to apply our algorithm, we need the phase histories (or the range profiles). We obtain the 
phase histories from the 128 × 128 complex-valued MSTAR images, by undoing the final steps of 
MSTAR image formation. We first take the 2-D Discrete Fourier Transform (DFT) of the images, then we 
remove the zero-padding to obtain 100 × 100 phase history samples and next we remove the windowing 
applied. From the MSTAR file headers, we know that a 35 dB Taylor window has been used. Then we 
divide the phase history samples by a 2-D Taylor window.  

4.2 Super-Resolution Imaging from Full-Resolution Data 
We now use the 100 × 100 phase history samples to form Super-Resolved images. We will form 
interpolated images of a factor 8 over a patch of 64 x 64 centered on target, obtaining a 512 x 512 samples 
image. Therefore, in order to have conventional SAR SPECAN images of this size for comparison, we 
first form interpolated 512 × 512 Taylor-windowed Fourier images. Images for both conventional and SR 
techniques applied for T72, BTR70 and BMP2 are in Figure 3, Figure 4 and  Figure 5, the SR images with 
an AR order determined by a ‘’Try and See’’ procedure, used for both axis, are at the right column. The 
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dominant scatterer appears to be accentuated as compared to the conventional images at the left column. 
We do not apply any windowing to the data before processing, since our method is able to suppress 
sidelobes considerably even with rectangular weighting. However, if desired, the method can be used with 
windowing. Each image is normalized to their maxima to remove the different scaling factors and finally 
fused together on a pixel by pixel basis: a non linear fusion law is applied by setting the pixel value of the 
final image equal to the maximum value of the 25-normalized SR-SPECAN images[9]. This fusion law will 
yield a final image with the highest number of target scatterers but at the same time will provide the worst 
background suppression capabilities. See Figure 6 (T72 and BTR70) and Figure 7 (BMP2) for Super-
Resolved SPECAN Fused image with maximum technique. 
 

T72 BTR70 BMP2 Target 
Azimuth Filename Best Order Filename Best Order Filename Best Order 

0° HB04025.015 27 HB03973.004 28 HB03893.002 27 
45° HB04034.015 28 HB03982.004 25 HB03901.002 29 
90° HB03852.015 29 HB03988.004 28 HB03909.002 30 

135° HB03802.015 28 HB03995.004 25 HB03917.002 30 
180° HB03809.015 28 HB03938.004 29 HB03926.002 29 
225° HB03935.015 28 HB03947.004 29 HB03875.002 27 
270° HB03824.015 25 HB03956.004 28 HB03876.002 28 
315° HB04016.015 28 HB03964.004 29 HB03884.002 25 

Table 1. Best AR order for each 64x64 SR-SPECAN image 

Best AR order for each SR-SPECAN image target elaboration are described in Table 1, and taking into 
account that the maximum order value is a half of the data length (32 in this case for a 64x64 available 
data), it is clear to see that high AR values (from 25 to 30) are preferred in order to enhance Super-
Resolution capabilities. 
 

  
Figure 3. Tank T72 (315° azimuth angle) Left: Specan, Right: SR-Specan with AR order 27 for 

both axis. 
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Figure 4. BTR70 (90° azimuth angle) Left: Specan, Right: SR-Specan with AR order 28. 

  
Figure 5. BMP2 (225° azimuth angle) Left: Specan, Right: SR-Specan with AR order 27. 

  
Figure 6. Super-Resolved SPECAN Fused image with MAX technique. Left: Tank T72 (315° 

azimuth angle) Right: BTR70 (90° azimuth angle)   
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Figure 7. Super-Resolved SPECAN Fused image with MAX technique. BMP2 (225° azimuth angle) 

4.2.1 Target-to-clutter ratio 

We will quantify the enhancement of the target pixels in the full-resolution data reconstructions by means 
of their target-to-clutter ratio. We compute the target-to-clutter ratio (TCr(dB)) as defined in  Equation 1, 
by using the bottom 20 rows (2000 pixels) of the reconstructed 100x100 images as the clutter region. Final 
TCr value is the average over the AR orders SR-SPECAN processing, the AR-values are from 7 to 31. 
Figure 8, Figure 9 Figure 10 shows the TCr values versus the AR orders for T72, BTR70 and BMP2 
respectively, evaluated with an azimuth target angle of 270°. This region is big enough to give a reliable 
estimate of the mean reflectivity magnitude, and is safe to use, since target and shadow appear to be 
located outside this region for the entire data set. Table 2 shows the average target-to-clutter ratio achieved 
by the conventional and the proposed methods over the 8 reconstructed target azimuth variation images for 
each target type. Last row represent the mean value expressed in dB of the linear TCr evaluated for each 
azimuth angle.  These results indicate a clear improvement of the target-to-clutter ratio by our proposed 
image formation method. 
 

T72 BTR70 BMP2 Target 
Azimuth SR Conventional SR Conventional SR Conventional

0° 47.0011 32.1083 54.0255  36.4485 69.3866 42.2303 
45° 43.2853 29.2631 34.9206 23.1271 43.912 31.1764 
90° 55.2862 35.5263 56.7158 34.2177 64.8596 41.9121 

135° 66.1575 41.3393 39.4638 25.3764 42.2591 28.8165 
180° 56.4607 36.0822 68.8944 45.3622 55.8789 37.3171 
225° 54.6906 36.94 38.7378 27.4282 42.489 30.129 
270° 58.4797 36.0718 58.2052 32.8596 61.0104 35.2174 
315° 48.633 33.61199 36.9852 22.0673 43.5977 30.581 

Average 56.4244 35.7657 56.0766 34.3262 58.8564 36.1692 
Table 2. Average target-to-clutter ratios of SR-SPECAN and Conventional processing 
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Figure 8. Target to Clutter Ratio vs AR 

order for T72 (270°) 

 

 
Figure 9. Target to Clutter Ratio vs AR order for 

BTR70 (270°) 

 
Figure 10. Target to Clutter Ratio vs AR order for BMP2 (270°) 

 

4.3 Point-Enhanced Super-Resolution Imaging from Reduced-Resolution Data 
In this section, we carry out experiments on two sets of data: those from the actual MSTAR images, and 
those from synthetic point scatterer scenes constructed using the MSTAR images. The reason for using 
synthetic examples is to demonstrate the super-resolution properties of our method in a situation where the 
ground truth is exactly known. We will present the main-lobe width results for the actual MSTAR 
reconstructions only. We will present the peak matching accuracy and the average associated peak 
distance results for both actual and synthetic images. We do not present the target-to-clutter ratio results in 
this section, since they are very similar to the full-resolution target-to-clutter ratio results. For experiments 
on actual MSTAR data, we form images from a 50 × 50 subset of the 100 × 100 phase history samples 
previously used. This results in a two times resolution loss in the range and cross-range directions. All the 
images we will form in this section are composed of interpolated 512 × 512 from the 50 × 50 subset. The 
left image in Figure 11 shows Taylor weighted Fourier images from the tank T72 (315° target azimuth) 
reduced-resolution data. The resolution loss in these images is evident when they are compared to their 
high-resolution counterparts in left image of Figure 3. We now form Super-Resolved image with an AR 
order of 20 for each axes, samples of which are shown in the right of Figure 11. 
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Figure 11. Sample images reconstructed from reduced-resolution (50 × 50) data. Left: 

conventional SPECAN. Right: proposed SR-SPECAN 

The main-lobe-width, as described in  Equation 1, of conventional reduced resolution image (50x50) is 
equal to 0.2650m and 0.0614m for the SR-SPECAN method, a ratio factor of 4.3159 is reached, 
enhancing the width-lobe-reducing capabilities of our proposed method. We now consider the synthetic 
examples. To generate synthetic scenes we find the 13 peaks with the largest magnitude in the tank T72 
(315° target azimuth) 128×128 Taylor-windowed Fourier images, and form a synthetic scene by placing 
simulated point-scatterers at the locations of these peaks, with the original complex reflectivity, and zeros 
in the rest of the scene. An example pixel-plot of the magnitude of such a synthetic scene is shown in 
Figure 12. We then generate simulated phase histories from this scene. The reconstructed conventional 
Taylor-windowed image from 64×64 phase history contour plot is shown at the left side, down row, of 
Figure 13. The average main lobe width is 0.225m, in this case loss of resolution is easy to observe. The 
corresponding Super-Resolution image produced by our method is shown at the right side, with an average 
main lobe width of 0.0812m, and we can visually observe that most of the scatterers that were merged by 
the conventional reconstruction are now resolved. 

 
 

Figure 12. Thirteen points synthetic image from T72 (315° azimuth angle) 
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Figure 13. Synthetic T72 image reconstruction from reduced-resolution data. Up: ground truth.  

 Down: results from 64x64 data, left: SPECAN, right SR-SPECAN 

4.3.1 Main-lobe width 

We compute the average 3-dB main-lobe width (AMLW) as described in Sect. 3.1.2 for all the 8-azimuth-
direction reconstructed MSTAR scenes of each target. The AMLW for the proposed method has been 
calculated as the mean AMLW over the super-resolved images starting from AR order 7, ending to 31 (see  
Figure 14 for an example on tank T72 with 270° target azimuth angle). The results in Table 3 show that 
our proposed scheme is able to reduce the lobe width considerably. To put these numbers in perspective, 
note that the resolution supported by the data is 0.6 m in this experiment. In last row of Table 3 we report 
the Improvement factor calculated as the ratio of mean AMLW for conventional and proposed method. 

 
Figure 14. AMLW for T72 image vs AR order 
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T72 BTR70 BMP2 Target 
Azimuth SR Conventional SR Conventional SR Conventional 

0° 0.1345 0.2144 0.0633 0.1626 0.1368 0.2803 
45° 0.0937 0.1889 0.1292 0.1943 0.0817 0.1548 
90° 0.0852 0.1803 0.1347 0.2463 0.0835 0.2068 

135° 0.0772 0.159 0.1115 0.1745 0.0892 0.2330 
180° 0.1412 0.2473 0.1243 0.1962 0.0789 0.1656 
225° 0.1337 0.2490 0.0761 0.1582 0.0992 0.1929 
270° 0.0574 0.1398 0.0854 0.2780 0.0879 0.3534 
315° 0.0892 0.1702 0.0727 0.1874 0.0747 0.1595 

Average 0.1015 0.1936 0.0997 0.1997 0.0915 0.2183 
I Factor 1.9 2 2.38 

Table 3. Average mail-lobe-widths of images for proposed and conventional methods 

4.3.2 Peak matching accuracy and average associated peak distance (AAPD) 

We now evaluate how the locations of the dominant peaks are preserved in reduced-resolution data 
situations by the conventional reconstructions and by our point-enhanced images. For the MSTAR 
examples, we use the locations of the 13 peaks extracted from tank T72 (315° azimuth angle) Taylor-
windowed synthetic image reconstructed from full data ( 

Figure 12). Figure 15 provides a visual comparison of the peak locating accuracy of the reconstructions 
from 64×64 data, comparing peaks extracted from our images with those from the conventional ones. The 
circles indicate the “reference” locations of the 13 dominant scatterers, and the plus signs indicate the 
peaks extracted from the reconstructed reduced-resolution images. Left side contains results for the 
conventional images, while  right side contains those for the SR images. The clear observation we can 
make out of these results is that, since conventional image formation causes peaks to merge, some of the 
peaks in the target area are lost, and peaks outside this area may become dominant. We will now evaluate 
the peak matching accuracy of our method by using the criterion described in Sect. 3.1.3. In Figure 17, 
Figure 18, Figure 19, we plot the average number of peak matches for the images formed by the 
conventional and the proposed methods as a function of the radius r within which a match declaration is 
allowed, respectively for T72, BTR70, and BMP2. The peak matching accuracy of our images appear to 
be higher than that of the conventional images. Note that our analysis is based on finding peaks all around 
the scene. Alternatively, the search for peaks can be done in a pre-determined target region only. The 
improved accuracy provided by our method is easy to observe in these plots. 

 

Figure 15. Sample peak extraction results for the synthetic reduced 64x64 T72 scenes. Circles 
indicate the scatterer locations in the synthetic scene. Plus signs indicate peaks extracted from 

the reconstructed images. Left: Conventional. Right: Proposed SR method. 
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The average distance between the true synthesized 13 peaks and the 13 peaks extracted from the 
reconstructed images as described in Sect. 3.1.4 is 0.46m for conventional method and 0.088m for 
proposed SR-SPECAN. These results indicate a clear reduction in peak distances by our method. Now we 
evaluate peak matching accuracy of  both conventional and proposed method over reduced resolution 
method. Reduced images are formed from 64×64 reduced synthetic 256×256 image (loss resolution factor 
4). A Taylor-window is applied for conventional method. Table 4, Table 5 and Table 6 show such 
performance results for each target type. It is clear to see how peak matching probabilities of proposed 
SR-SPECAN method is higher than that of conventional one with a reduced averaged associated peak 
distance. The AR order chosen for both axes in SR methods is 3. Figure 16 shows one matching example 
for BTR70 target, with relative average number of peak matches curves for the synthetic scene as a 
function of the radius of match declaration. 

 

T72 
SR Conventional Target 

 Azimuth Matches AAPD(m) Matches AAPD(m) 
0° 12/12 0 6/12  0.0167 

45° 11/11 0 9/11  0.0111 
90° 12/12 0 8/12  0.0530 

135° 14/14 0 7/14  0.0429 
180° 12/15 0.0167 5/15 0.0766 
225° 14/14 0 6/14 0.0471 
270° 19/21 0.1972 10/21 0.0883 
315° 11/11 0 5/11 0.0483 

Average 96.3% 0.0267 52% 0.048 
Table 4. Peak matching accuracy and average associated peak distance (AAPD) performance for 

T72 data 

BTR70 
SR Conventional 

Target Azimuth 

Matches AAPD(m) Matches AAPD(m) 
0° 16/19 0.1207 7/19 0.0866 

45° 12/12 0 8/12 0.0405 
90° 18/18 0.1128 10/18 0.0200 

135° 12/12 0 4/12 0.1377 
180° 10/17 0.0200 4/17 0.0854 
225° 15/15 0 7/15 0.1178 
270° 14/14 0.0706 5/14 0.0400 
315° 10/10 0 8/10 0.1361 

Average 92.8% 0.0405 47.3% 0.0830 
Table 5. Peak matching accuracy and average associated peak distance (AAPD) performance for 

BTR70 data 
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BMP2 
SR Conventional 

Target Azimuth 

Matches AAPD(m) Matches AAPD(m) 
0° 9/9 0 4/9 0.0604 

45° 8/8 0 6/8 0 
90° 12/23 0.1369 6/23 0.1177 

135° 8/8 0 7/8 0 
180° 18/18 0.1063 8/18 0.0427 
225° 11/11 0 8/11 0.0375 
270° 9/19 0.0824 4/19 0.1104 
315° 10/10 0 7/10 0.0143 

Average 87.5% 0.0407 55.1% 0.0479 
Table 6. Peak matching accuracy and average associated peak distance (AAPD) performance for 

BMP2 data 

 

 
Figure 16. BTR70 (90°) Left column: reconstructed image from reduced 64x64 data. 

Right: pixel matching image. Top: Conventional. Bottom: Proposed method. 
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Figure 17. Average number of peak matches 
for the synthetic T72 (180°) scene as a 

function of the radius of match declaration r 

Figure 18. Average number of peak matches 
for the synthetic BTR70 (90°) scene as a 

function of the radius of match declaration r 

 
Figure 19. Average number of peak matches for the synthetic BMP2 (180°) scene as a function of 

the radius of match declaration r 
 

4.4 Region-Enhanced Imaging 
We now compare our region-enhanced images with conventional ones in terms of the criteria described in 
Sect. 3.2.1. Here, we form interpolated images patches (factor 8) from 128 × 128 Taylor-weighted phase 
history samples. In our proposed SR-method, we use an AR order equal to 20 for each target type and both 
axis, we will see that low AR values are preferred in order to enhance regions segmentation.  

4.4.2 Segmentation accuracy 

We segment our region-enhanced images by simple adaptive thresholding as described in Sect. 3.2.1, 
using c1=1 and  c2=2 for both proposed and conventional method. Pictures from Figure 20 to Figure 22  
shows sample reconstructions using the conventional and proposed method for BTR70 target type. In 
contrast to the conventional images, the SR reconstructions reduce variability in homogeneous regions, 
while preserving discontinuities at region boundaries. These results show that segmentation is 
considerably simplified by our reconstruction method. It is clear to see that such thresholding-based 
segmentation applied to conventional images, produce results dominated by fluctuations in homogeneous 
regions. We have also discovered that low AR order values are optimum for best segmentation 
performance. 
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Figure 20. BTR70 (90°). Histogram plot from reconstructed data. Left: Conventional. Rigth: 

Proposed. 

 
Figure 21. BTR70 (90°). SR-Specan: Results post Image Segmentation. Top row: Binary mask. 

Bottom row: Results. 
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Figure 22. BTR70 (90°). Specan: Results post Image Segmentation. Top row: Binary mask. 

Bottom row: Results. 

5.0 CONCLUSION 

We have demonstrated the feature-enhancement properties of Super-Resolution method using 2D 
modified covariance method through a variety of quantitative criteria. The results indicate that the images 
produced by this method exhibit super-resolution and improved localization accuracy for dominant 
scatterers when high AR orders are used, and improved separability for different regions for low AR 
orders. With these properties, the method seems to have the potential for improving the performance of 
ATR systems. At the moment polar and multi-frequency data has been used to “combine multi-domain 
data” with proposed fusion method in order to increase correct classification probabilities. Future work 
will involve running recognition tests on images produced by this technique, and automatic selection of 
AR order (Akaike Information Criteria and Minimum description length). 
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